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GEOMETRICAL MECHANICS

Introduction

"Kinetic energy is a Riemann Metric on Configuration space. "

We examine this statement in detail in order to illustrate the method

i 2
and purpose of this course. First, we define kinetic energy as T = 3 mv 3

in detail, the kinetic energy T of a particle with mass m, moving along

4 .
an arc s = s(t) at velocity v = —di- is T =

2 "
ordinates x,y, and z, ds = dx2 + dy2 +dz ,

mvz. . In 3-space, with co-

N N~

If the particle is moving on the surface of a sphere of radius r, its posi-
; Z

B

tion may be given by spherical coordinates :

2]
e
r sin 6 cos ¢ / Ax

x =
y=r sin 6 sin ¢ L—f«p
=rcos © v
where 6 depends on the "latitude" and ¢ on the "meridian." Since r is
fixed, '
dx = rcosecoscpdé - r sin 0 sin ¢ de¢
dy = r cos 0 sin ¢ d6 + r sin 6 cos ¢ de
dz = -r sin dé

An elementary calculation gives

2 2
ds2 =dx + dyz + dz2 = r2 dGZ ¥ rzsin S dcpz

The equation
' 2 2 2 2 2
dsz=r d6  + r sin 6 de
is an example of a Riemann metric. It is a symmetric (in fact, diagonal)

quadratic form in the differentials dé and d¢ . This metric on the ¢ -6

rectangle (0; 27) X (0;w) gives arc length on the sphere.



However, this single (¢ - 8) chart is not enough. (A chart on the
sphere is a smooth 1-1 correspondence between an open set in the plane
and part of the sphere. In this chart, the angles (o, 6) are mapped to the
point they determine (r sin® cos ¢, r sin @ sing, r cos 'G) .) This chart
cannot describe neighborhoods of the north or south pole smoothly. So
more chartsr are r;eeded.

In fact, it would be better to start over and use the two charts based
on stereographi;: projections from the two poles. The first chart would be
the mappi.ng' of the whole x-y plane onto the sphere minus the north pole.
This is done by placing the sphere's south pole tangent to the origin of the
x-y plane and mapping each point (x, y) in the plane onto the point of the
sphere where a line (segment) from (x, y) to the north pole intersects the
sphere. The other chart is made similarly by placing the x-y plane tangent
to the north pole.

The sphere together with these charts is an example of a Differentiable

Manifold. We will frequently use differentiable manifolds (e.g. configura-
tion space will be defined as a differentiable manifold .. .)
Two possible references are:

S. Sternberg, Lectures on Differential Geometry, Prentice Hall 1964

(It contains references to mechanics)

and

Noel J. Hicks, Notes on Differential Geometry, van Nostrand



The texts are:

Ralph Abraham, Foundations of Mechanics, Benjamin 1967

and _ _
Mac Lane & Birkhoff, Algebra, Macmillan 1967 (contains references on

vectors, quadratic forms, modulqs i

1
Let M be a "configuration space" with coordinates q , ..., qn . We

pose the problem: given n particles, each moving in one dimension, with
masses m,,...,m_, can we formulate the kinetic energy of this system
1 n )
: ] Y oo 3 , : 1 dsg 2 .
as that of one particle of mass m moving in n-space. (i.e., T = 3 m(—a;)
where s denotes an element of arc in n-space)?

The total energy T is the sum of the energies 'I'i ,» Where Ti is the

energy of the ith particle. Thus

i

Te 3 4 m A
12 it dt

We need only define

2 ~— Wi i2
(1) as® = > (==)(4q)
i=1
) 1 ds 2 . : . :
to obtain T = _Z-m(E . Moreover, (1) is a Riemann metric on configura-

tion space !

‘In general, a Riemann metric is of the form

ds2 = E gij dqlqu ‘where (gij) is a symmetric and positive
i,j=1

definite matrix. Each gij is a constant or, more generally, a smooth

function.
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§1 Modules (including vector spaces).

Let K be a commutative ring. That is, K is a set of elements
(scalars) which is an abelian group under the binary operation + (addition),

with 0 ¢ K as the neutral element: that is,

for all k,k'e K, k+ k' e K; 0+k =k ; there exists -ke K such that
| k+(-k) = 0

k.e K, (k

kZ' 3 i

for all k +k2)+k =k +(k2+k3); k,+k_ =k +1<i "

1’ 3 1 1 72 2

Also there is a binary operation . (multiplication), with 1 ¢ K as the neutral
element,satisfying + fox ;11 ki’kz’k3 e K,
1-k1 = k1 " ki-kz e K, <k1’k2)'.k3 = ki-(kz-k3) ¢ ki’k2 = lcz-k1 .
Moreover, the distributive laws hold, viz., .ki'(k2+ k3) = kl'k2 + ki-k3 »
Examples are 7 fhe ring of integers, () the ring of rational numbers,
and R the ring of real numbers. Moreover, and R are fields ( a com-
mutative ring K, is a field if for each k ¢ K., k# 0 there is a k'1 ¢ K such that

-1=

k'k 1)-

Definition. A K-module A isan abelian group A with right (module)

action by K

AXK > A

defined by (a, k)~ ~m>ak and satisfying the laws

1., a(k + k') = ak + ak'
2. (a+a)Yk=ak+ak
3, al=a

4. (ak)k' = a(kk').

If K is a field, A is a vector space OVer Ks



(Note: We employ the following "arrow" notation; for sets X and Y the
straight arrow X —> Y denotes a function from X into Y; the wavy arrow
Xmmsy shows the value y the function takes at x ¢ X. If we want to label

the function f, we write £: X —>Y or X -£—> Y . X is called the domain
K> £(x) xrm £( %)

of £, Y is called the codomain (or range) of f, and if they are clear, we may

write f: x~~—»f(x). )

Definition. f: A—>B (with a~~>f(a) ) is a homomorphism of

K-modules, if f is a homomorphism of abelian groups (i.e., f(ata') = f(a)+£(a'))

~and f(ak) = (fa)k for all ae A, ke K,

If K is a field, f is usuaily called a linear transformation.

Definition. Hom._(A,B)= {f:A—> Bl f is a homomorphism of K-modules}

ek

the set of all K-module homomorphisms of A

into B.

The set HomK(A, B) is itself a K-module under the following definitions

1° (£ + g)(a) = fat ga

2° (fx)a = (fa)k .

The reader unfamiliar with modules is invited to check that 1d gives an
abelian group and that 2° satisfies the module laws.
Note: K itself is a K-rmodule (the right' action is just multiplication KXK-—> K )
A* g' HomK(A, K) is called the dual (or conjugate) of‘ A, Forexample,
if K=R , and A=YV avector space, then V* = Hom (V,R ) is the dual

space. If V is finite dimensional with basis € s vee vE then V  has the




dual basis ei, — e where ety V—> R is defined by

ei(e.)Jo iy

Yoot i=g

There is an alternate development in terms of coordinates: If

n i p . 2 .
v = z ei:r:1 ¢ V, define e v—[R (v-~>xi) , that is, el(z ejx']) =x .
i=1 i=1

Further examples of rings and modules:

R[]

the ring of all polynomials in x with real coefficients

(Kt +akx.k|k_>_0, aie[R, 0<i<k}.

{ao+ a

We illustrate how modules differ from vector spaces. Let K= A

A /Z -module is just an abelian group

asn=a+...a if n20
—
n summands

= (-a) + ... +('i) if n<0

.

'
(-n) summands
abelian group

The Z/3 = {0, 1,2} has addition modulo 3. For example,
Z/ -module

sk o

2+2= 2+2-3=1, The dual module (.743’ ) = Hom.. (Z,, 2)={£: Z —7 | fis
. 7 v 3 3

a homomorphism of £ -modules},

/\ is 0, because f(1) +£(1) +£(1) = £(1+1+1) = £(0) =0 ¢Z . Therefore £(1) =0,
and £=0, and (Z"3)$ = 0. However, it is well known that the dual V"g of

any n-dimensional vector space V also has dimension n. Therefore, if we

o
choose n>0, then V £ V# 0.

th3
We develop further notation for V = {f:v—K

f is a K-linear transforma-

tion}, where V. is again -a finite dimensional vector space over a field K. Write



def. %
(£,v) get. f(v) ¢ K, for fe V and ve V. The equations

(f,v1.+v2) = (f,vi) + (f,vz)

(f,vk) = (f,v)k
éhow that f is a linear transformation. The definitions
Z! V) = (flbv) + (fZ, V)
(fk,v) = (£, v)k

| (f1+f

!,
%
show how V is a vector space.

s

Define, forall ve V, F:V —> K (f~>£(v)) ; that is, ¥ is the function
- e dey -
(=,v):f——=(f,v). Now ¥V isin V = (V*)" and v~V defines a linear trans-

Rk
V . (The proof is straightforward.) 6 is one-to-one

fo rmatioﬂ v >

(i,e. v=0 implies v=0¢e¢V) and Vand V have the same dimension,
sesie
therefore 0. is an isomorphism between V and its "double dual® V' . The

isomorphism is natural (see Algebra, Ch. 15, §5) and we will identify
R
V—e——">V

V Aracmaares V
by this isomorphism.
We review dual bases in the ( , )-notation. If V is n-dimensional with

z o, . . g . 1 n
basis e " en, then V is n-dimensional with basis e ,...,¢€ where

1’..'
: .o if;
(e”,e.)=8, =
o3\t i=j
Proposition. (el,v) is the ith coordinate of v in the basis ei,...,en ’

Proof. Let v=ex1+...+e X", then (el,v)=(e1,ex +ou e x)

e i : n . 1 n
{ . . :

)x +...+(e1,e)xn=0+...+(el,ei)x1+...+O= ",

n

i
’=(e.ei



.§2 Euclidean Vector Spaces

A Euclidean vector space is a finite dimensional vector space W

over R with an inner product WX W ——R ((v,w) AV W) satisfying

1. linear (v1k11+v2k Yew = (vl-w)kl - (vz-w)kz

. therefore bilinear
2. symmetric VW = WV _

3. positive definite v# 0= v.v>0

K @00 x
[y

For example, let V be all n-tuples ( } with inner product
n

X\ [V

o

n &
= . 15" Nve . Si
: ; 1% xiyi The length of v is Nv:Vv ince we wrote the
n n

elements of V as column vectors, it is suggestive to write the elements of
X

* i &
V  as row vectors (a,,...,a_). Then (a,x) = ((2a,p00002)s |F )
i n 1 n xn
n : X,
equals 12—1 a.x which is the matrix product (ai, il § an) x E
n

If V has an inner product, then we have a natural isomorphism V &V
(vanr¥ ) ,where V(w) = vew. % is linear because ¥ =v.—, so indeed

L3 £
YeV . V—>V is linear, because

FTv)w) = (viv')ew = (vew) + (v'ew) = Hw) +T(w) = & +9) (W),

and :
_ N \ N .

Vk(w) =(vikr w = V(w)k = (¥k)(w).

] ® s
V —> V  is one-to-one, since ¥=0=>v.v=0=v=0. V and V* have the

i : ; -y L G Blos .
same dimension, so Yy —= V", is onto. ‘We identify V =-V. by this isomorphism.

Let V have an inner product v-w, Take any basis ei, nE 25 en. Then

lj) is an n X n matrix, symmetric and positive

let g =erec R . Ag = (g,



definite. Moreover, the matrix g determines the inner product?

n " n . n .. n o 3

i i i

(> ax Sey) = > (e, e)xsd = > g .x% ]

- i=q J e 1) o M
i=1 j=1 i,j=1 i, j=1

But V = V*, so the dual basis ei, . 3 e® is also a basis of V, while

i -
the equation gJ = ¢'.e) defines a different symmetricl., positive definite

h¥

n X n matrix of real numbers! However,

i i i )0 iFd
(e’,e,)=e-e, =6 =
J J ] 1 i=;j
_, i n i n
Proposition. e = 2 gJe. and e, = z g e .
. i=1 J o=t Y

Proof. Because of the duality it suffices to prove only the first equality.

5 N , k ;
It is enough to test the equality by application to each basis vector e (since

for all k, v-ek=v'-ek=> for all k, (v-v')-ek=0=—>v-v'=0=>v=v').,

We test
ijak _ ik def i k
= g == e e .

= @ k 2. i k .
(> g'e)e =§g3(e.,e)=2g
j=1 ! j=t ? j

, ij Y
We summarize: the g . change upper indices to lower ones,’ and the

_ ij . ;2
g change lower indices to upper ones. Moreover, g~ is the inverse

matrix of gij .

g . . 3 . . 1 n
Definition. A Riemann metric on R (with coordinates ¢ ,...,4 )

> n X n matrices over R where

n
is a function G: R

i 1
- Y. qn)rww~—> (gij = gij(q R qn)) and (gij) is a positive definite,:
symmetric matrix, and for each i and j the functions gij(q e e es qn) has
. ' . . 1 n foe)
continuous derivatives of all orders (g..(¢ ,...,q )¢ C ). We let

ij
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n
2 . 1 > : .
ds” = —Z- gij(q . qn)dq1 dq’ so that arc length is given by the integral
51

1 n i j
Jo\/:? afa e ) T

Again, to keep things simple, we consider a system of n particles, each
3 3 . . 3 - n

moving one-dimensionally. Our configuration space 1s R , where the co-

h .

. 1 ey s . 3%
ordinates q ,..., qn correspond to the position of the n particles. If the i

particle has mass m, , its kinetic energy T is

i
1 dg- (2 _ L i2
T =5 my d_t) = zm(V)

The second law of motion tells us that, if F.1 is the force on the ith particle

2 i
then m, -—-iz— = Fi for i=1,...,n. We also assume that the system is
dt

conservative, that is, there exists a suitable potential energy function

n
v:i R — R (i.e., a real-valued function on the configuration space) such

oV

that the forces are Fi 8 ==

8q
The above second-order system of differential equations is difficult to

work with, but by the standard trick of doubling the number of variables we

get the equivalent first-order system

i i .
i e 5 B, Sh. - 9*, i=1,...,n
i dat i dt -
g . y g - n 1 n
in a 2n-dimensional space with coordinates g ,eeces@ sV 300V ¢ For

reasons that we hope to make clear later, we again shift coordinates by

transforming to momentum, Pp. 3
i

(1) P«':miVl:_éT_-- ’ i=1,...,n.

1 dvl
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The Riemann metric, which you may recall we identified with the
kinetic-energy form, is a matrix gi.j whose only entries in this case are
the numbers m, on the diagonal; the transformation given by this metric

is exactly the transformation of equation (1). In our new coordinates

{ :
q ,...,qn, Pi""’pn , we define the Hamiltonian H=T+YV, a.nd we get

2
| Py - _dT _ 8H
t=3 2_ m, ! vi_dpi - op,

since V does not depend on momentum; and by the second law

d; gy aH
dt dqi aq'i
or
om W
dt api
i = i, L B J ’ I‘l L]

d9,  sm
it  9p.

Typical conservative mechanical systems can be described by equations

in this so-called Hamiltonian form . The system of equations refers to the

coordinates qi, e qn, PysewesPy of a point in phase space; in the most

general case, the first n of these coordinates will not necessarily describe

a point of a vector space, as they do in our simple-minded exampl.e, but a
point of a more general mathematical object. The last n coordinates, though,
will often refer to a vector space. ‘I‘Be whole business will be described,
mathematically, as the cotangent bundle of a diffe rentiable manifold, which is
just a method of expressing the properties of the usual phase spaces of mech-

anics in a systematic and presumably more comprehensive way.




=

Chapter I. Local Mechanics

§1. Functions

First, some preliminaries about notation. Following mathematical
usage, we refer to "the function sin ," not "the function sin(x)," reserv-
ing the expression sin(x) for the value of the function sin at the point X.
"The function et we write as " e ", and "the function x2 " comes out
as "(-)2 " The value of the function f at x is f(x), or sometimes fx.

Next, we review some basic definitions from caiculus and sho;;v how
they may be understood intuitively in terms of easy topological notions.
Recall

n m -
Definition. If f is a function from ]R to R , f is continuous at a

if, given €¢>0, there exists a number & > 0, such that lx-al < § implies
N n n n n
|fx - fa| < €. If £ is a function mapping R .to R (in symbols K —R,

we replace |x-a| by > (x.l- ai)2 .

n
Now some topological definitions. In R , given a point a = (ai, s 3 an),

N

the open ball of radius & with center a is {(xi, ,xn)l ‘\/i (xi-vai)'2 < 8},
If n=1, an open' ball is just an open interval (open = not includiﬁg end points),
while in dimension two an open ball becomes just a disk, (open = not including
fhe points on the circumference). We-generalize this property of g set which

contains none of its boundary points" in the next definition.



- f3

Definition. An open set U in Rn is any union of open balls.

Be aware that there may be infinitely many open balls in the union
making up U, and that they may overlap; thus an open set may be a very
bcomplicated object, with ragged edges, holes, disconnected pieces, and
other peculiarities you can visualize. But we can state the following (the proof
is easy): U is an open set if and only if, given a in U, there is a number
§ > 0, such that the ball of radius & with center a lies in U. In fact, in
terms of open sets the definition of continuity assumes the following new and -
interesting form.

n m
Theorem. Let U be an open set in R , and f: U —> R . Then f is
: m
continuous at every point of U if and only if, for every open set V in R .
. n %
£ by is open in IR , where f v = {xe U| £(x) e V}.

Here f-iv, called the inverse image of V, is merely the set of all points

of U which f maps into V.

We.quickly sketch the 1-3;'oof of the theorem: if .f is continuous by our
first definition, pick a point of f-iv, and take a ball of radius ¢ around its
image in V; then by the first definition there will be a ball of radius & sur-
rounding our original f)oint and lying in f—1V, which shows that f‘iv is open.
The other implication is proved similé.r}y. For details on this, as well as
more facts about general topology, refer to any book on general topology.

The ith coordinate of # point in I'Rm may be viewed as a real-valued
function qi: Rm —_— R defined by qi.(a) = qi(ai, csupB )T @, 4 B2 L4010

n 1

n —Rm : i
Thus ¢: R — | yields m coordinate functions ¢, defined by
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0'(x) = q'(¢(x)). By the partial derivatives of the function ¢ we mean the

i
)

usual partial derivatives QD.‘ .
9q’

Definition. ¢ is C° if all the first-order partial derivatives exist
: e k . i . ; .
and are continuous; it is C if for each ¢, all possible partial derivatives
: ' ’ i 3 - < k
of order < k exist and are continuous; itis C if it is C~ for every k> 0. .

A smooth function will usually meana C function.

B o I
Thus, the set :71: of all smooth functions f£: R -—>‘R forms a ring,
since if f and g are smooth, so is the sum f+g, where (f+g)(x) = £(x)+ g(x),
and so is the product fg, where (fg)(x) = f(x)g(x); and since the ring axioms

hold for this sum and product of functions.

§2 Paths, Functions, and Tangent Spaces.

Now we come to the fur;damental duality involved in describing
the action of physical systems, a type of duality which we will see again and
again in this course. We have already met the smooth function £f: U —>R
for U open in Rn. Its counterpart is the path, a smooth function c: I— [Rn,
where I is an interval of R s (Think of apointtel asa "time".) Notice
that for us a path is not just a string of points but & function, which specifies
for each t e I, the point c(t) reached at time t. Ai: any point x of Rn,
consider all paths passing through x. ‘Each has its associated tangent vector
at x, which is shorter or longer depending on the speed with which the path

is traversed, that is, on the parametrization of the function c. We are about

to describe how these vectors form a tangent space. -




-15-

First, we define an operation relating the dual objects f and c.

Definition. <f,c¢>_ = [i (foc)] , if <¢(0) = a.
2elinifion. 2"l -

Notice that we have the property

<f k, +f.k,,c> = <f,,c> k
a 1 a

1y Sk, +<f2,c>ak

1 2’

Our object is to use the operation <, > to establish a dual vector space

relation between the tangent space and the set of differentials, which will form

the cotangent space. To see why this is possible, let us for the moment put

n n
" coordinates on R . The path ¢ maps a subset I of R into U C R , and
f maps U into R again; thus the composite function foc, defined by the
rule (foc)(t) = £(c(t)), is just a real-valued function defined on the subset I of

the real line. The chain rule for functions of several variables gives us

dlfoc) _ aflc’(t),...,c"(®) _ i\ (2 (4l
dt , dt e i‘g=a’ dt ‘t=0
A i={ ©oq '
Thus, it seems possible to represent the tangent vector to ¢ by the vector
1 n .
dc dc " v o b = of of .
( TR )O , and the differential of f by the vector ( aqi I _aqn )a, :

then <f{, C>a. is exactly the ordinary euclidean inner broduct of these two
vectors.

We choo'se, however, to develop these ideas by the moxv intuitive, co-
ordinate-free approach. To do this we need the notion of equivalence relation,

a generalization of the idea of equality. We say = is an equivalence relation

on the set S if for all elements a,b, and c of S, we have a = a; a = b implies
b=a; and a=band b=c implies a=c. Inwords, = is reflexive, sym-

metric, and transitive. .
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It is an easy theorem that = divides S into equivalence classes;
" that is, subsets of S consisting of mutually equivalent elerﬂents, such
that if any two elements of S are equivalent then they are in the same sub-
set. The crucial idea here is that we can now view each equivalence class
as itself an element in a new set W ; we decide that, since all the elements
of an equivalence class are equivalent, we might as well consider them as
the same object. As an example, let S be the set of real numbers, and
let s be equivalent to t if s-t is an integral multiple of 27 ; the set of
equivalence classes can be identified with the unit circle in the complex plane.
(See Mac Lane and Birkhoff, Algebra, Chapter 1, §7.)

We now use the idea of equivalence class tcs idéntify all those functions
on U which have the same "cotangent" vector at the point a ¢ Us We define
f Eag iff <f{, c>a =<g, c>a for all c. In coordinate notation, this means

the same thing as saying

(——ag—) = (ﬁ’g—) for all -i.
Bq:L a 8q1 a

It is not hard to see that the equivalence classes of functions now form a

vector space, which we call TaU, the cotangent space to U at a, or the

space of differentials. We just have to check the vector space axioms, first

noticing that fi‘Eagl ; fz =g implies fi +£2 =g + g,
H =_8> k a scalar implies. fk =, gk
e <f +f ,c> = <f ,c> +<f ,c>
Fipe>, = <fpen 75505

and <fk,c> = <f,c> ks
a -1
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and then, defining daf to be the equivalence class of the function £, we see
that we may write da(f+ g) = daf + dag, and da(fk) = (daf)k, and the vector
space axioms are satisfied.
Now let b,c:I—> U be two paths with b(0) = c(0) = a, é.nd write
ci for‘ qic: I —->[R . In a; similar way we define b = c to mean that, for
| dbt e

< =< (3 . : =
all £, <f,b> £,¢> (in coordinate notat1on,%-1:—)t=0 ( = )t=0

for
all i). Intuitively spe_éking, b and ¢ are equivalent curves if and only if they
kiss at a ; that is, if they have the same tangent _vector there (same length
and same direction). If we write Ta.U for the set of all congruence classes
T.C of paths, we find that we can no longer duplicate the vector space con-
struction above, since the latter depended on being able to add two functions
f and g; whereas there is no direct and natural way of defining the sum of two
paths. We rely instead on the ‘operation <, > to transfer to vector space
structure on T-U to the set TaU' Here T U is the space of all differentials
daf, while TaU is the set of all tangents 7_c to paths ¢ through a.

Since the vglue of <f{, C>a. depends only on the equivalence classes of f
and ¢, we can define < daf, TaC>a; to be the number <f{, C>a . Now the function
which takes T C to the linear functional < -, T C > Ta(U) —> R isa map

from Ta.U into the dual space of T2U. We have

Tac=Tab<_—_'.>ch<=—‘—-> <f,c>=<{,b> all £
<> <—=,T c> = <—=,7 b> ;
a a

afs
bX3

thus, the map Ta.U — (TaU) is one-to-one. If we can prove that this map

is also onto, we will be able to transfer the vector space structure on the
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a. . x ; . 4
range space (T U) to the domain space TaU in such a way that the map p
hecomes a vector-space isomorphism. For this proof we must refer to the

i n
coordinates q1 of R . Recall that daf = dag if and only if

(

5 5 g .

f. ) = (—g—) for all i. The function q, defined by qla,,..,a) = a,
i‘a i‘a 1 n i

9q 9q

corresponds to the cotangent vector daq1 which is written in coordinates as

n

(0,0,...,1,...,0), where the 1 is in the ith place. Hence daqi,...,daq

is a basis of TaU' In a similar way, we have n péths running along the
i . .

coordinate axes: x (t) = (ai, az, e attt, ..., an). Thus"raxl, aE B 'raxn

belong to TaU' (Note that x'(t) is defined for t sufficiently small, so

x:I—> U is a path.)

i n . g
Theorem. T X seees T ¥ form a basis of TaU' a vector space ;

daqi, =% 54 daqn form a basis of T%U 3

and

3
TaU = (TaU) under the map p.

Proof. From what we have already done, it is enough to show that,

using the addition and scalar multiplication operations "pulled back"” from

:|

] n
(TaU) by the above map p, T X,...,T X form a vector-space basis

, 1 . :
of T U, and that it is the dual basis of & 4 ,ees;8. 4 . The T x* span T U,
a . a a a . a

since if c is any path,

(f,c-z(ii ) -raxi>=0,A

1 t=0
o B ag i dcl
hence ¢ =_ %:( 5 )=0 x . So we can express any T_C as z (—:i:t—)t=o-rax
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The dual basis condition is expressed by the fact that

T e i 1 =i
<d q', T x> = (M) = Q.E.D,
a a a dt £=0 0 j# i

(Remember that this is not an inner product but a function on two different

spaces, and thus we have not a single orthonormal basis but two bases which
i .

are dual, in the sense that e ej =<e’, ej> = sij .)

Now at last we can justify our use of the term "differentials" for ele-

ments of the cotangent space, for we compute

n .
TE - 2 (ﬂl_) qIDC> = O:
i=1 d8q 2

and hence

which is just the usual formula for the differential of a function of several
of ) )
aql 1 3

~ Our coordinate-free set-up becomes really useful when we consider

i : i, eqqt 2 i
variables. Since <f,x> = ( ), we will also write T x = (
a a

9q

the effect of a smooth function ¢ mapping U to another open set V. If

c is any path in U passing through a, ¢ carries that path into a path in V
passing through ¢(a), namely the path represented by the composite function
poc., It is easy to_ check that this gives us a map from T?U to TaV, defined

by 'racm-rqo(a)(cpoc). This map will be called T ¢ OT ¢ - The dual situa-

*

tion is completely symmetric, only everything is reversed. Namely, if h is
a smooth function on V, then ho¢ is a smooth function on U, and thus

hmda(hmp) maps T¢(a)V — TU. (Note that this map is backwards,

d
¢(a)
from V to U.)



Y T

If we view intuitively a
tangent vector as a small

geometric vector (an arrow) ' U

lying in our open set U, then
the mapping tp'* "carries" each

such arrow in U to a correspond-

ing arrow in V. Dually, we may view
a function f from U to IR asa
"collapsing" of U onto some line,
analogous to the projections of a two-

dimensional set in the plane onto the x- RDOW s m

heo
and y-axes. The effect of the mapping P ,:X / \
: ’ h
R w3 "R

ate

9" or dago which ¢ induces on the
cotangent space is to take a collapsing of V and from it get a collapsingof. U

by first mapping U to V and then collapsing V. We summarize the situation

as follows

a
da( fogp) T U T U T ©
TP = ¢ T ¢= 9 %
~ o(a) ' v
d , \f ik T 5. T c
o(a) ol2) o(2)?)

Moreover, we have the following "self-adjointness" rule,

~ d ~
<d fo,T c> = <d 4 c> =——(fogoc
Toryen = < Fir ey =g iceedl g

called that because it can be abbreviated <fg,c>=<f,¢pc>.
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When we introduce coordinates ql on U and a‘l on V, the chain rule
gives us the following formula for transforming the base 8/851 of T‘p(a)V to

that of T U:
v a

o/ogt = S 8(Poo) 0
aq" oy

Thus we may write

9q 8y
where ag is the m X n Jacobian matrix
. ~J e
2l = AZedl| o (@)
9q 9q
Similarly

¥ (d¢(a)§j) =, da(ij)é 2 (—(%—W—) aq’ z a ) aq" .

q*
If now Ui £ UZ bl s U3 we get induced linear transformations
¢ LP* %
T (U > T u)——>T U,); b ideri
a.( 1) ¢(a)( 2) li((p(a))( 3) ; by considering the effect of

the composite map yo¢ on a typical curve in Ui’ we see that (We )*:; U

In the dual case, there is a reversal of order, called contravariance in

general: %
£ .e %

(Uo) df = d(f yo) = ¢ d(fY) = df.

If 1 dehotes the identity map taking every point to itself, ‘then it'is clear -

that we have - - 1,=1, L * =1; and thus, in particular, if ¢ = <1'>_'1 then

5 *‘
-1

Yy = (9,) -
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§3 Tangent Bundles

Now imagine our open set U of n-space as if it were a 2-dimensional
sheet in space; over each point of U sits the tangent space at that point,
an n-dimensional vector space. If we now imagine the tangent spaces as
stalks which are tightly bound together by the structure of U we have en-

visioned the tangent bundle of U, written T.(U). The points of T.(U) are

the pairs (a,v), where a is a pointof U and v is a point of Ta(U). Since
a2 and v are both points of n-space, we imagine the pair (a,v) as lying
2n

in IR“". This concept should be clear enough from physics: the point a is

the position, and the value of v is the (directed) velocity at a, which taken

together form a point of phase space; since in general, to describe the
future motion of a particle we need to know only its position and velocity, it
seems likely that the tangent bundle will be a natural setting for the study of

mechanics. Even more useful is the cotangent bundle, T'(U), which is de-

fined to be the set of pairs (a,w), where this time we Ta(U); that is,
w=d,f for some function f. We have natural maps, projections, in both

T :T..(U) —> U; - wfa,v)=a
aé : T*(U) —> U; Tr'(a,w) = a
(&) is

Notice that if a is a point of U, the complete inverse imagé'r("l;r'f;

always a vector space.

By a vector field X on U we will mean an assignment of a vector Xa

of TaU to every point a of U, such that the correspondence am> Xa is



